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Abstract
The energy levels and far-infrared absorption spectra of a self-assembled InAs
ring with one and two electrons in an external magnetic field are calculated
numerically. We use a truly three-dimensional effective mass model which
considers finite potential barriers and mass dependence on the energy and
position, and includes strain effects. The results obtained indicate that far-
infrared spectroscopy of self-assembled rings is very sensitive to electron–
electron interactions. The exchange energy leads to aperiodic fractional
Aharonov–Bohm oscillations of electronic states and rapid narrowing of the
magnetic field windows corresponding to the spin singlet ground state. Our
results also suggest that the symmetric form of parabolic confinement potential,
which has been widely employed to describe quantum rings, is unsuitable for
self-assembled rings as it poorly describes the relevant effects of the inner
radius.

1. Introduction

Recent advances in nanoscopic fabrication techniques have made it possible to grow self-
organized InAs nanorings with ‘volcano’ shapes [1, 2]. These nanoscopic rings may be
the best suited quantum structures for investigating the electronic and optical properties of
quantum rings, because they are in the scattering-free and few-particle limit [5]. Two of the
most interesting properties of quantum rings are their response to external magnetic fields and
their multi-particle excitation spectra. In the presence of a magnetic field, perpendicular to
the plane of the ring, the interaction between the charge of a particle confined in the ring and
the magnetic flux induces successive changes of the carrier ground state symmetry (i.e. the
Aharonov–Bohm (AB) effect [3]). In addition, the ringlike confinement breaks down the
generalized Kohn theorem so that, unlike in quantum dots, the excitation spectrum of quantum
rings may reveal electron–electron interaction effects [4].
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In order to study these properties Lorke and co-workers measured the far-infrared (FIR)
magneto-absorption spectra of a macroscopic number of self-assembled quantum rings, each
of them charged on average with two electrons [5]. Despite of the fact that several theoretical
works have studied electron–electron interactions in these structures [5–9], the role of such
interactions is not very clear yet. For example, some authors suggested that the profile of
Lorke’s FIR spectroscopy experiment is roughly captured by the non-interacting particles
picture [5, 7]. This is surprising because the Coulomb energy inferred from capacitance
experiments for a two-electron self-assembled ring was as large as 20 meV [5], and therefore
the so-called ‘fractional AB effect’ should yield major changes in the energy structure [10, 11].
Other authors obtained a similar degree of agreement with the FIR experiment by considering
interacting particles [6]. The energy spectrum they predicted for the non-interacting case was
indeed different to that they predicted for the interacting case.

The fact that both the non-interacting and interacting pictures account for most of the
experimental data can be explained from two factors. On the one hand, the theoretical models
used so far to investigate Lorke’s two-electron experiment were based on the two-dimensional
effective mass Hamiltonian with parabolic confinement potential introduced by Chakraborty
et al [12]. Such models are subject to a fitting procedure1 which warrants agreement with a
number of experimental resonances. On the other hand, the low resolution of the FIR absorption
experiment allowed only the detection of a small number of resonances. No resonance under
10 meV could be registered. Therefore, a significant part of the experimental data may be
reproduced by means of either the non-interacting or the interacting Hamiltonian with an
appropriate fitting procedure. A theoretical model free of fitting parameters is of high interest in
order to unambiguously determine the role of electron–electron interactions in self-assembled
quantum rings.

Moreover, there are doubts regarding the validity of the parabolic confinement potential
for self-assembled quantum rings. The electronic states of these rings are very sensitive to
changes in the inner radius [14]. Thus, unlike in quantum dots, the details of the confinement
potential are important. Using a confinement potential of the form introduced in [12] and
assuming that a single ring geometry was present in the sample of [5], reasonable agreement
with the experimental FIR resonances was obtained [5–7]. Conversely, a later work by Puente
and Serra [8] using a different form of parabolic confinement potential (which was modified to
account better for the inner radius of the ring) required a bimodal distribution of ring sizes to
explain the same experimental data. It follows that a realistic confinement potential is needed
for a definitive assessment of the role of the electron–electron repulsion on the optoelectronic
properties of a self-assembled ring with interacting electrons.

In this paper, we use a truly three-dimensional model, similar to those which successfully
described the near-infrared spectrum [15] and single-electron energy structure [16, 17] of
InGaAs rings, to calculate the electron states and intraband transitions of one and two electrons
in a typical InAs/GaAs quantum ring. We use a finite rectangular-well confinement potential
defined by the band offset between the material of the ring and that of the matrix. Without
any additional knowledge on the possible interface grading or bandbending, this potential is
certainly the most reasonable that one can propose2.

1 At least three parameters need to be fitted: the characteristic frequency of the confinement potential, the effective
radius of the ring and the electron two-dimensional effective mass [12, 13].
2 It should be noted that the asymmetry of the 2D parabolic-like potential of [8] accounts for the unequal vertical
confinement at the inner and outer edges of the ring cross-section: an abrupt potential for the inner edge, which
represents the sheer wall of the ring cavity, and a smoothly increasing potential for the outer edge, which represents
the smoothly decreasing height of the ring in the radial direction. Since our confinement potential is 3D, it accounts
for this vertical confinement explicitly.
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Figure 1. Cross-section of the investigated quantum ring and strain profile of ε‖ (solid lines) and εzz

(dotted lines). The radial strain profile is taken at half ring height and the vertical one at half section
width. The confinement potential is Vc = 0 eV inside the ring (grey region) and Vc = 0.77 eV
outside.

2. Theory

The one-band effective mass Hamiltonian for the electron states, including a magnetic field
perpendicular to the ring plane, can be written in cylindrical coordinates and atomic units as

He =
(

−1

2
∇

(
1

m∗(En,m; ρ, z)
∇

)
+

(Bρ)2

8m∗(En,m; ρ, z)
+

Bm

2m∗(En,m; ρ, z)

+
1

2
µBg(En,m; ρ, z)Bσ + Vc(ρ, z) + acεhyd(ρ, z)

)
, (1)

where m = 0,±1,±2, . . . is the quantum number of the projection of the angular momentum
onto the magnetic field (B) axis, n is the main quantum number, Vc(ρ, z) is the finite
confinement potential corresponding to the geometry shown in figure 1, and m∗(En,m; ρ, z)
and g(En,m; ρ, z) stand for the energy- and position-dependent mass and Landé factor,
respectively [17]. ac denotes the hydrostatic deformation potential for the conduction band,
and εhyd is the hydrostatic strain, which we calculate within the framework of the isotropic
elastic theory [18, 19]. It should be noted that this theory allows for good strain estimates
while preserving axial symmetry [20]. The strain profile along the radial direction at half ring
height and that along the vertical direction at half ring cross-section are displayed in figure 1.
Solid lines are used for lateral strain, ε‖ = 1

2 (εxx + εyy), and dotted lines are used for εzz .
The main effect of hydrostatic strain is to increase the energy gap. This effect, along with
the non-parabolicity of the conduction band, leads to increased electron effective masses for
InAs. It is then possible to retrieve appropriate values of the mass to reproduce experimental
results without having to invoke GaAs diffusion into the ring [15, 16]. Equation (1) is solved
numerically using the finite-difference method on a two-dimensional grid (ρ, z). Ben Daniel–
Duke boundary conditions are imposed [21].

The two-electron Hamiltonian can be written as

H2e(1, 2) = He(1) + He(2) + Vee(1, 2), (2)

where He is the single-particle Hamiltonian (equation (1)) and Vee is the electron–electron
Coulomb repulsion term. Equation (2) is solved by means of the configuration interaction
method on the basis of the one-electron wavefunctions,

ψn,m,σ = fn,m(ρ, z) eimφ |Sσ 〉, (3)

where fn,m(ρ, z) is the eigenvector of equation (1) and |Sσ 〉 = |S〉|σ 〉 is the Bloch function for
electrons, with the spin σ = ↑ or ↓. The matrix element of the electron–electron interaction
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can be expressed as a five-dimensional integral,〈
i j

∣∣∣∣ 1

ε∗r12

∣∣∣∣kl

〉
= 1

2πε∗

∫ ∫ ∫ ∫ ∫
dρ1 dρ2 dz1 dz2 d� cos (n�) fi (ρ1, z1) f j (ρ2, z2)

× fk(ρ1, z1) fl(ρ2, z2)
ρ1ρ2√

ρ2
1 + ρ2

2 + (z2 − z1)2 − 2ρ1ρ2 cos�
, (4)

where ε∗ is the effective dielectric constant, n = (mk − mi) and � = φ2 − φ1. Equation (4)
is integrated using Monte Carlo routines. The two-electron wavefunction

	M,S,N (1, 2) =
∑
i, j

cM,S,N
i, j

1√
2
(ψi (1)ψ j(2)− ψi (2)ψ j (1)), (5)

is labelled by its total angular momentum z-projection M = m1 + m2, total spin S = σ1 + σ2

and main quantum number N .
The optical absorption intensities for intraband transitions between two-electron states

are calculated within the electronic dipole approximation [22]. We assume non-polarized
light, although most of the intensity arises from the in-plane light components. We also
assume T = 0 K so that only transitions from the ground state are calculated. The transition
probabilities are represented employing Lorentzian curves of half-width
 = 0.5 meV, in order
to obtain smooth spectra3. Hence the absorption coefficient can be written as

α(E) = C
∑

f

Ef − E0

1 + 4
(

E−(Ef−E0)




)2 |〈	f | 	µ|	0〉|2. (6)

Here C is a constant factor (which we arbitrarily set to one as we look for relative intensities).
	f and 	0 are the final and ground states, respectively. Their corresponding energies are Ef

and E0. The x-component of the two-particle dipole matrix element is defined by

〈	f |µx |	0〉 = −〈	f |(x1 + x2)|	0〉 (7)

= −
∑
i, j>i

∑
k,l>k

c f
i, j c

0
k,l

[
δ j,l xik + δi,k x jl − δ j,k xil − δi,l x jk

]
, (8)

where

xik =
∫ ∫ ∫

fni ,mi (ρ, z)e−imiφρ cosφ fnk ,mk (ρ, z) eimkφρ dρ dz dφ

= 1
2 (δmi ,mk +1 + δmi ,mk −1)

∫ ∫
fni ,mi (ρ, z) fnk ,mk (ρ, z)ρ2 dρ dz. (9)

The y- and z-components of the transition moment are analogously defined.

3. Results and discussion

We investigate a self-assembled InAs ring embedded in a GaAs matrix. Lacking precise
knowledge on the composition, size and shape of self-assembled structures, our main goal is
to qualitatively study the role of electron–electron interactions. Making arbitrary assumptions
about the effects of diffusion and segregation would allow for a better fit of the experimental
results at the expense of introducing subjectivity. Thus, we simply use the shape and dimensions
of a typical InAs ring observed by atomic force micrography [5, 23] and assume a pure InAs

3 The value 
 = 0.5 meV is just an empirical parameter to simulate a smooth spectrum.
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Figure 2. Low-lying energy levels of a single electron in the quantum ring versus magnetic field.
Solid curves are used for the spin σ = ↑ states and dotted curves for the spin σ = ↓ states.

composition4. For similar reasons, we neglect the presence of a wetting layer. The shape
of our ring is a cut torus (see cross-section in figure 1). The inner radius is 10 nm and the
outer radius 60 nm [5]. Following recent measurements [23], 4.5 nm height is set at the
inner edge of the ring cross-section and then we let it decrease as a spherical casket. We
use an electron band-edge effective mass for InAs(GaAs) m∗ = 0.028(0.067), energy gap
Eg = 0.42(1.52) eV, split-off  = 0.38(0.34) eV and hydrostatic deformation potential
ac = −6.66(−9.3) eV [20, 24]. The corresponding conduction band offset is 0.77 eV, and
the effective dielectric constant is 12.4. The configurations interaction calculations include all
the single-particle states up to 35 meV away from the ground state. We have checked that by
enlarging this basis set no significant changes in the low-lying two-electron states are achieved
within the range of the magnetic field that is being studied (0–12 T).

Figure 2 illustrates the low-lying single-electron energy levels versus magnetic field. Solid
curves representσ = ↑ states, and dotted curvesσ = ↓ states. Two sets of lines corresponding
to the ground n = 1 and first excited n = 2 states can be seen. The first set (n = 1, |m| =
0, 1, 2 . . .) begins at about 617 meV and the second one (n = 2, |m| = 0, 1, 2 . . .) at about
641 meV. In the presence of a magnetic field, the energy of the ground state describes aperiodic
oscillations as expected from the AB effect in quantum rings with finite width [17]. Figure 2
is similar to the electron energy spectrum in [16]. The most significant differences shown in
figure 2 are the magnitude of the binding energies (about 600 versus 200 meV in [16]) and the
energy spacing between levels with m = ±1 at zero magnetic field (about twice as much
as in [16]). The first difference comes from the hydrostatic strain. The second is due to the

4 Recent evidence about the synthesis of InP/GaAs self-assembled rings indicates that the shape transformation from
dots to rings is not accompanied by compositional changes [2]. Besides, an InGaAs alloy would yield similar results
to those we predict here because the increased electron effective mass due to the presence of Ga is compensated by
the weaker strain effects which, as mentioned in section 2, also lead to increased effective masses.
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Figure 3. Two-electron energy levels versus magnetic field in the absence (a) and presence (b)
of electron–electron Coulomb interaction. Only levels that become the ground state in a given
magnetic field window are shown. Grey-shaded regions indicate windows where the ground state
has a total spin of S = 1.

current ring cross-section shape which allows the charge density maximum to be located at
values of ρ below those found in [16], yielding, then, larger contributions of the centrifugal
term in the Hamiltonian (1). It should also be noted that the energy spacing between levels with
n = 1 in figure 2 is similar to that found within a similar three-dimensional single-particle
model [17].

Figure 3 shows the two-electron ground state versus magnetic field without (a) and with
(b) Coulomb interaction. The states are labelled according to their total angular momentum
z-projection and total spin (M, S). Grey-shaded regions represent magnetic field windows
where the ground state has spin one (triplet). At B = 0 the ground state is (0, 0) in both cases
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(with and without Coulomb interaction). As the magnetic field increases, states with lower M
become more stabilized, eventually replacing the (M + 1) ones as the ground state. As a result,
the ground state shows a succession of decreasing M and spin oscillation (singlet–triplet–
singlet–triplet· · ·) that characterizes the interplay between the Zeeman term and the ringlike
confinement [7]. When no Coulomb interaction is included, the ground state is predominantly
singlet (S = 0), although the contribution of the atomic Zeeman term in the single-particle
Hamiltonian (equation (1)) gives rise to windows of the magnetic field where S = 1 levels
become the ground state (grey-shaded regions). Such windows, which are relatively wide even
at moderate magnetic fields, are not found when the atomic Zeeman term is neglected [7, 10, 11].
Therefore, figure 3(a) shows that the contribution of the atomic Zeeman term, even though
small in magnitude, can strongly modify the energy structure of electrons in a self-assembled
ring. When the Coulomb interaction is considered (figure 3(b)), all the states are shifted
upwards due to electron–electron repulsion. The lowest-lying levels experience a stronger
Coulomb interaction and so at B = 0 the ground state (0, 0) is closer to the first excited state
(−1, 1) than in the non-interacting case. Moreover, the S = 1 triplet states are stabilized
by the exchange interaction and they come down in energy with respect to the singlets. As
a result, the values of the magnetic field corresponding to the first crossings of the ground
state are approximately halved as compared to those of the non-interacting picture. This is
known as the ‘fractional AB effect’ [10]. This effect is strongly dependent on the size of
the quantum ring. Figure 3(b) gives an estimation for an InAs self-assembled ring with the
dimensions observed in atomic force micrographs. In our calculations, the halving of the spin
singlet domains is approximate only at low values of the magnetic field. At high values, the
spin singlet domains are almost suppressed and the ground state has predominantly spin one
(triplet). This is due to the enhancement of electron–electron interactions and atomic Zeeman
splitting with increasing magnetic field. The first crossings in figures 3(a) and (b) take place
at similar magnetic field values to those predicted by Puente and Serra for both interacting
and non-interacting electrons [8], although for the increasing field we find a larger number of
crossings.5

It is worthwhile pointing out that the net Coulomb interactions we find at B = 0 are
in the 3–5 meV range. They are smaller than the ones predicted by the two-dimensional
models (between 7 and 11 meV) [7, 9] because two-dimensional models overestimate Coulomb
interactions due to the infinite confinement in the vertical direction. Our Coulomb interaction
energies are also below the 20 meV inferred by Lorke et al using capacitance spectroscopy [5].
We have determined that such a large Coulomb energy cannot be achieved with our model even
for narrow-width rings holding a 10 nm inner radius, because the charge density spreads over
the inner core of the ring before reaching such a strong interaction. Therefore, our calculations
suggest that the missing central part of the ring cannot be responsible for any surprisingly large
Coulomb interaction as pointed out in [5].

In figure 4 we plot the FIR absorption of the two-electron ring without (a) and with
(b) Coulomb interaction for B = 0, 0.5, 1, 1.5, . . . , 12 T. The intensities are displayed in
arbitrary units and they are offset for the sake of clarity. In the non-interacting picture two
sets of resonances can be easily distinguished, a low-lying N = 0 one and a high-lying
N = 1 one. At zero magnetic field, the low-lying resonance consists of a single peak at
1.8 meV and the high-lying one is also a single peak at 26.3 meV. When the magnetic field is
switched on, both the low-lying and high-lying resonances exhibit Zeeman splitting. The single
peaks at B = 0 now split into two smaller branches, one at slightly lower energies related to
M = −1 transitions and the other at slightly higher energies related toM = 1 transitions.

5 See [16] for a physical interpretation of the larger number of crossings in our calculations.
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Figure 4. Two-electron FIR absorption in the absence (a) and presence (b) of electron–electron
Coulomb interaction at T = 0 K. The spectra are calculated for magnetic fields B = 0–12 T in
steps of 0.5 T. The intensities are in arbitrary units and the curves have been offset for clarity.

In general theM = 1 branch is more intense than theM = −1 one. As the magnetic field
increases, the energy of the low-lying M = 1 resonances progresses in a zigzag manner,
while the high-lyingM = 1 branch experiences sudden bumps. This behaviour is originated
by the AB oscillations of the ground state energy (see figure 3(a)). The absorption spectrum
of interacting particles roughly resembles that without Coulomb interaction. However, some
important differences can be underlined. First, the peaks at zero magnetic field get closer.
Thus, the low-lying peak is now at 4.1 meV and the high-lying one is at 25.2 meV. In addition,
a new smaller peak arises at 28.3 meV. This peak originates from the mixing of different
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angular momenta and spins induced by the Coulomb interaction. Second, the intensity of the
resonances is quite different. This can be seen for example in the relative intensities of the
low-lyingM = 1 andM = −1 branches, which are now of a similar size for all magnetic
fields. Third, the symmetry changes of the ground state occur at different values of the field
due to the fractional AB effect (see figure 3(b)) and this has a profound impact on the possible
transitions at each value of B .

Figure 4 is very different from the absorption spectrum of a self-assembled ring which
is obtained with the usually employed parabolic confinement potential [6, 7]. Nonetheless,
it strongly resembles the calculated magneto-absorption spectrum of the quantum ring V 3
in [8]. Therefore, our model also suggests that a single quantum ring cannot account for all
the experimental FIR resonances and at least a second type of ring must be present in the
sample measured by Lorke et al [5]. This second type of ring must be responsible for the
resonances between 10 and 20 meV. The agreements of the two calculated absorption spectra
(interacting and non-interacting) with the high-energy experimental resonances (marked with
dots in figure 2(b) of [5]) are rather similar6. Therefore, our model indicates that Lorke’s
experiment can be roughly described within the single-particle approximation,although higher-
resolution experiments should find clear manifestations of electron–electron interaction effects.

4. Conclusion

In conclusion, we have studied the electron energy structure and FIR absorption of one and
two electrons in a self-assembled InAs/GaAs quantum ring in a magnetic field. The atomic
Zeeman effect and electron–electron interactions have been found to induce significant changes
in the energy structure and FIR absorption. The Coulomb exchange interaction yields visibly
aperiodic fractional AB oscillations of the ground state energy as well as a rapid narrowing of
the magnetic field windows corresponding to spin zero (singlet) ground state. Our 3D model
calculations compares well with FIR resonance energies and oscillator strengths obtained in [8]
with a modified form of the parabolic potential for the inner radius of the ring. Here the results
are achieved without any parameter fitting, therefore giving strong support to their interpretation
of [5] experiments on self-assembled ring spectroscopy. These results also suggest that the
parabolic form of the confinement potential used for mesoscopic rings [12] is unsuitable for
self-assembled rings, as it poorly describes the effect of the inner radius.
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